Driving biomass breakdown through engineered cellulosomes
نویسندگان
چکیده
Extraction of sugar is the rate-limiting step in converting unpretreated biomass into value-added products through microbial fermentation. Both anaerobic fungi and anaerobic bacteria have evolved to produce large multi-cellulase complexes referred to as cellulosomes, which are powerful machines for biomass deconstruction. Characterization of bacterial cellulosomes has inspired synthetic "designer" cellulosomes, consisting of parts discovered from the native system that have proven useful for cellulose depolymerization. By contrast, the multi-cellulase complexes produced by anaerobic fungi are much more poorly understood, and to date their composition, architecture, and enzyme tethering mechanism remain unknown and heavily debated. Here, we compare current knowledge pertaining to the cellulosomes produced by both bacteria and fungi, including their application to synthetic enzyme-tethered systems for tunneled biocatalysis. We highlight gaps in knowledge and opportunities for discovery, especially pertaining to the potential of fungal cellulosome-inspired systems.
منابع مشابه
Colocalization and Disposition of Cellulosomes in Clostridium clariflavum as Revealed by Correlative Superresolution Imaging
Cellulosomes are multienzyme complexes produced by anaerobic, cellulolytic bacteria for highly efficient breakdown of plant cell wall polysaccharides. Clostridium clariflavum is an anaerobic, thermophilic bacterium that produces the largest assembled cellulosome complex in nature to date, comprising three types of scaffoldins: a primary scaffoldin, ScaA; an adaptor scaffoldin, ScaB; and a cell ...
متن کاملAdaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature
UNLABELLED Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression...
متن کاملA combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells
BACKGROUND Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantar...
متن کاملEnhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability
BACKGROUND The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostabil...
متن کاملDetrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
Nitrogen (N) and phosphorus (P) concentrations are elevated in many freshwater systems, stimulating breakdown rates of terrestrially derived plant litter; however, the relative importance of N and P in driving litter breakdown via microbial and detritivore processing are not fully understood. Here, we determined breakdown rates of two litter species, Acer rubrum (maple) and Rhododendron maximum...
متن کامل